Explicit Elimination of Similarity Blocking for Session-based Recommendation
نویسندگان
چکیده
A single ‘odd’ interaction can cause two user interaction sessions to diverge in similarity, and stand in the way of generalization. The sensitivity of session-based recommenders to session similarity motivates us to explicitly identify and remove such ‘similarity blockers’. Specifically, we leverage huge amounts of data, which allow us to identify blockers in the form of non-co-occurring items. Other blockers can be identified using content-based similarity. Our experiments reveal that explicitly eliminating relatively few blockers improves performance.
منابع مشابه
A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملItem-to-item recommendation based on Contextual Fisher Information
Web recommendation services bear great importance in ecommerce, as they aid the user in navigating through the items that are most relevant to her needs. In a typical Web site, long history of previous activities or purchases by the user is rarely available. Hence in most cases, recommenders propose items that are similar to the most recent ones viewed in the current user session. The correspon...
متن کاملUncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016